Phenomenological Rate Equations for a Semiconductor Laser

K. Myneni

\framebox{\it Intensity Rate Equation}


\begin{displaymath}
{d\vert E\vert^2 \over dt} = \underbrace{G(n)\vert E\vert^2}...
...\vert E\vert^2 \over \tau_p}}_{\mbox{\tiny cavity
loss rate}}
\end{displaymath} (1)


\begin{displaymath}
{d\vert E\vert \over dt} = {1 \over 2} \left( G(n)\vert E\vert - {\vert E\vert \over \tau_p} \right)
\end{displaymath}

\framebox{\it Linear Gain Approximation}

\begin{displaymath}
G(n) \approx G(n_{th}) + \left.{\partial G \over \partial n}\right\vert _{n=n_{th}}
(n - n_{th})
\end{displaymath}


\begin{displaymath}
G_N \equiv \left.{\partial G \over \partial n} \right\vert _{n=n_{th}}
\end{displaymath}


\begin{displaymath}
{d\vert E\vert \over dt} = {1 \over 2} \left( G(n_{th}) + G_N(n - n_{th}) -
{1 \over \tau_p} \right) \vert E\vert
\end{displaymath}

In the steady state,

\begin{displaymath}{d\vert E\vert \over dt} = 0 \end{displaymath}

Therefore,

\begin{displaymath}G(n_{th}) = {1 \over \tau_p} \end{displaymath}

\framebox{\it Amplitude Rate Equation}

\begin{displaymath}
{d\vert E\vert \over dt} = {1 \over 2} G_N(n-n_{th})\vert E\vert
\end{displaymath} (2)

\framebox{\it Fabry-Perot Cavity Mode Frequency}

\begin{displaymath}
\omega_m = m 2\pi {c \over 2\mu L}
\end{displaymath}


\begin{displaymath}
d\omega_m = m\pi {c \over L} d\left({1 \over \mu}\right)
= - m\pi {c \over L\mu^2} d\mu
\end{displaymath}

\framebox{\it Linear Index Approximation}

\begin{displaymath}
\mu(n) \approx \mu_f + bn
\end{displaymath}


\begin{displaymath}
b = \left.{\partial \mu \over \partial n}\right\vert _{n=0}
\end{displaymath}

The envelope phase rate equation is given by

\begin{displaymath}
{d \phi \over dt} = \Delta \omega
\end{displaymath}


\begin{displaymath}
\Delta \omega = \omega (n) - \omega (n_{th}) =
m \pi {c \over \mu_{th}^2 L} (\mu - \mu_{th})
\end{displaymath}

Therefore, the mode frequency shift is

\begin{displaymath}
\Delta \omega = r(n-n_{th})
\end{displaymath}

from which follows:

\framebox{\it Phase Rate Equation}

\begin{displaymath}
{d \phi \over dt} = r(n-n_{th})
\end{displaymath} (3)

Since, $E = \vert E\vert e^{i\phi}$,

\begin{displaymath}
{dE \over dt} = e^{i\phi}\left({d\vert E\vert \over dt} + i\vert E\vert{d\phi \over dt}\right)
\end{displaymath}

Combining the amplitude and phase equations (2) and (3) gives:

\begin{displaymath}
{dE \over dt} = ({1 \over 2}G_N + ir)(n-n_{th})E
\end{displaymath}

\framebox{\it Complex Field Rate Equation}

\begin{displaymath}
{dE \over dt} = {1 \over 2}(1 + i\alpha)G_N(n-n_{th})E
\end{displaymath} (4)


\begin{displaymath}
\alpha = {2r \over G_N} \propto
{\left.\left({\partial \mu ...
...t({\partial G \over \partial n}\right)\right\vert _{n=n_{th}}}
\end{displaymath}

\framebox{\it Carrier Density Rate Equation}

\begin{displaymath}
{dn \over dt} = \underbrace{{I \over eV_a}}_{\mbox{\tiny inj...
...ce{G(n)\vert E\vert^2}_{\mbox{\tiny stimulated emission rate}}
\end{displaymath} (5)


\begin{displaymath}
G(n) \approx {1 \over \tau_p} + G_N(n - n_{th})
\end{displaymath}